Thursday 25 February 2016

Is deep learning the future of NILM?

Deep learning has recently revolutionised a number of well-studied machine learning and signal processing problems, such as image recognition and handwriting recognition. Furthermore, long short-term memory architectures have demonstrated the effectiveness of applying recurrent neural networks to time series problems, such as speech synthesis. In addition to the impressive performance of these models, the elegance of learning features from data rather than hand crafting intuitive features is a highly compelling advantage over traditional methods.

In the past year, deep learning methods have also started to be applied to energy disaggregation. For example, Jack Kelly demonstrated at BuildSys 2015 how such models outperform common disaggregation benchmarks and are able to generalise to previously unseen homes. In addition, Lukas Mauch presented a paper at GlobalSIP 2015 describing how sub-metered data can be used to train networks to disaggregate single appliances from a building's total load. Most recently, Pedro Paulo Marques do Nascimento's master's thesis compared a variety of convolutional and recurrent neural networks across a number of appliances present in the REDD data set. Each piece of research demonstrates that there's real potential to apply deep learning to the problem of energy disaggregation. 

However, two critical issues still remain. First, are the huge volumes of sub-metered data available which are required to train such models? Second, are the computational requirements of training these models practical? Fortunately, training can be performed offline if only general models of appliance types are to be learned. However, if learning is required for each individual household, surely this will need to take place on cloud infrastructure rather than embedded hardware. I hope we'll get closer to answering these questions at this year's international NILM conference in Vancouver!

Thursday 18 February 2016

NILM 2016 registration and paper submission now open



The 3rd International Workshop on Non-Intrusive Load Monitoring (NILM 2016) will be held in Vancouver, Canada from 14-15th May 2016, at the beautiful SFU Burnaby Mountain Campus. Registration for the conference is now open so make sure you book your place by 15th March (though please book early as space might be limited). The paper submission site is also now open until 24th April, along with an updated call for papers. We've also put together an excellent programme committee to ensure each paper receives feedback from experts in the field. For full details and updates, see the conference website: